麻豆国产精品有码在线观看-麻豆国产免费影片-麻豆国产人免费人成免费视频-麻豆国产三级在线观看-国产入口在线观看-国产三及

首頁 產品展示>珀金斯Perkins1206E-E66TA技術資料(英文)

珀金斯Perkins1206E-E66TA技術資料(英文)

珀金斯Perkins1206E-E66TA技術資料供應商,珀金斯Perkins1206E-E66TA技術資料技術價格規格咨詢服務,珀金斯Perkins1206E-E66TA技術資料零配件供應,珀金斯Perkins1206E-E66TA技術資料售后服務中心,珀金斯Perkins1206E-E66TA技術資料,珀金斯Perkins1206E-E66TA技術資料詳細的技術參數,
產品咨詢

詳細描述

Specifications

1206E-E66TA Industrial Engine

BK (Engine)

This document is printed from SPI². Not for RESALE


 

Important Safety Information

Most  accidents    tha t involve  produc  t  op eration,  ma intena nc e and   repair   are  caus  ed  by  failure  to

ob serve  basic   safety   rules  or  precautions  .  An accident    can   often  be  avoided   by  recog nizing  pote ntially

ha za rdous  situations   before   an  accident    oc curs . A person    mus t be  alert   to pote ntial  ha za rds.  This

person   should   also  ha ve  the  ne cessary   training,  skills  and   tools  to perform   the se  func tions properly.

Improper operation, lubrication, maintenance or repair  of this product can be dangerous and

could result in injury  or death.

Do not operate or perform any lubrication, maintenance or repair on this  product, until you have

read and understood the operation, lubrication, maintenance and repair information.

Sa fety precautions     and  warning s  are   provided   in this  ma nua l and   on  the  produc t.  If the se  ha za rd

warning s  are  not  he eded,   bod ily injury  or death   could   oc cur to  you  or to  othe r persons  .

The  ha za rds are   identified   by  the  “Safety  Alert  Symb ol”  and  followed  by  a  “Signa l  Word” suc h  as

“DANGER”, “WARNING”  or “CAUTION”.  The Sa fety  Alert  “WARNING” label  is  shown   below.

The  me aning  of  this safety   alert   symb ol is  as  follows:

Attention! Become Alert! Your Safety is  Involved.

The  me ssage   tha t appears     und er the   warning  explains    the  ha za rd and   can  be   either  written  or

pictorially   presente  d.

Op erations  tha t  ma y caus e  produc  t dama  ge  are  identified   by  “NOTICE” labels   on  the  produc  t and   in

this  pub lication.

Perkins cannot anticipate every possible circumstance that might involve a potential hazard. The

warnings in this publication and on the product are, therefore, not all inclusive. If a tool, procedure,

work method or operating technique that is not specifically recommended by Perkins is used,

you must satisfy yourself that it is safe  for you and for others. You should also ensure that the

product will not be damaged or be  made unsafe by the operation, lubrication, maintenance or

repair procedures that you choose.

The  informa tion, specifications   ,  and  illustrations   in  this  pub lication  are   on the  basis    of informa tion tha t

was  available    at  the  time  tha t the  pub lication   was  written.   The  specifications   , torque  s,  pressure  s,

me asure me nts , adjustme  nts , illustrations ,  and  othe r  items  can  cha  ng e at  any  time.  These  cha ng es  can

affect   the  service   tha t is given   to the  produc  t.  Ob tain the  comp  lete  and  mos t current   informa tion before

you  start any   job. Pe  rkins  dealers   or   Pe rkins  distributors     ha ve  the  mos t current   informa tion  available.

When  replacement  parts  are  required  for  this

product Perkins recommends using Perkins

 replacement  parts.

Failure to heed this warning can lead to prema-

ture failures, product damage, personal injury or

death.

This document is printed from SPI². Not for RESALE


 

KENR9113-01

3

Table of  Contents

Table of Contents

Atmospheric Pressure Sensor .............................. 46

Inlet Manifold Temperature Sensor ....................... 47

Temperature Sensor (DPF Inlet) ........................... 47

Pressure Sensor (NOx Reduction System) ..........  47

Temperature Sensor (NOx Reduction System) ....  48

Speed/Timing Sensor  ..........................................  48

Electronic Control Module ..................................... 49

Glow Plugs  ........................................................... 50

Air Compressor (Twin Cylinder Compressor) ....... 50

Air Compressor (Single Cylinder) .........................  51

Specifications Section

Engine Design  .....................................................

Fuel Injection Lines  ..............................................

Fuel Injection Pump  .............................................

Fuel Injectors  .......................................................

Fuel Transfer Pump  .............................................

Fuel Filter Base  (Single Secondary Fuel Filter

Base) ...................................................................

Fuel Filter Base  (Twin Secondary Fuel Filter

Base) ...................................................................

Fuel Filter Base (Primary Fuel Filter Base) ...........

Fuel Manifold (Rail) ...............................................

Lifter Group ...........................................................

Rocker Shaft  ........................................................

4

4

5

6

6

Index Section

7

Index .....................................................................  53

7

8

8

9

9

Valve Mechanism Cover  ...................................... 10

Cylinder Head Valves ...........................................  11

Cylinder Head  ...................................................... 12

Turbocharger ........................................................  14

Exhaust Gas Valve (NRS) ....................................  15

Exhaust Sensor and Lines Gp (NRS) ................... 16

Exhaust Cooler (NRS) ..........................................  16

Exhaust Manifold  .................................................  19

Flexible Exhaust Pipe ...........................................  20

Diesel Particulate Filter ......................................... 20

Camshaft  .............................................................  21

Camshaft Bearings  ..............................................  22

Engine Oil Filter Base  .......................................... 22

Engine Oil Cooler  ................................................. 23

Engine Oil Pump  .................................................. 23

Engine Oil Pressure  ............................................. 24

Engine Oil Pan  ..................................................... 25

Crankcase Breather  ............................................. 27

Water Temperature Regulator and Housing .........  27

Water Pump  ......................................................... 28

Cylinder Block  ...................................................... 28

Crankshaft  ...........................................................  29

Crankshaft Seals  .................................................  30

Vibration Damper and Pulley  ............................... 31

Connecting Rod Bearing Journal  ......................... 31

Main Bearing Journal ............................................ 32

Connecting Rod  ................................................... 32

Piston and Rings  .................................................. 34

Piston Cooling Jet ................................................. 35

Accessory Drive (SAE “B”) ...................................  35

Accessory Drive  ................................................... 36

Front Housing and Covers  ................................... 36

Gear Group (Front) ............................................... 37

Flywheel  ............................................................... 38

Flywheel Housing  ................................................  39

Belt Tensioner ....................................................... 40

Refrigerant Compressor .......................................  40

Fan Drive  .............................................................  41

Engine Lifting Bracket ........................................... 41

Alternator  .............................................................  41

Starter Motor  ........................................................ 43

Coolant Temperature Sensor  ............................... 45

Engine Oil Pressure Sensor .................................  45

Boost Pressure Sensor ......................................... 46

This document is printed from SPI². Not for RESALE


 

4

KENR9113-01

Specifications  Section

Specifications Section

i04085729

Fuel Injection Lines

i03898012

Engine Design

Contact with  high pressure fuel  may cause fluid

penetration and  burn hazards. High pressure  fu-

el spray  may cause  a fire  hazard. Failure to  fol-

low these inspection, maintenance and service in-

structions may cause personal injury or death.

Refer to Operation  and Maintenance Manual,

“General Hazard Information and High Pressure Fuel

Lines” before adjustments and repairs are performed.

NOTICE

Refer to Systems  Operation, Testing and Adjust-

ing, “Cleanliness of Fuel System Components” for

detailed information  on the standards  of cleanli-

ness that must be  observed during ALL work on

the fuel system.

g01284058

Illustration 1

Cylinder and valve location

(A) Exhaust valve

(B) Inlet valve

Ensure that all adjustments and repairs are performed

by authorized personnel that have had the correct

training.

Bore .........................................  105 mm (4.133 inch)

Stroke ......................................  127 mm (5.000 inch)

Displacement ..................... 6.6 L (402.76 cubic inch)

Cylinder arrangement .....................................  In-line

Type of combustion ............................ Direct injection

Compression ratio

Turbocharged charge cooled .................... 16.5:1

Number of cylinders ................................................ 6

Valves per cylinder .................................................. 4

Firing order .........................................  1, 5, 3, 6, 2, 4

When the crankshaft is viewed  from the front of

the engine, the crankshaft rotates in the following

direction: ...................................................  Clockwise

When the camshaft is  viewed from the front of

the engine, the camshaft rotates  in the following

direction: ...................................................  Clockwise

The front of the engine is opposite the flywheel end.

The left side and the right  side of the engine are

viewed from the flywheel end. The No. 1 cylinder is

the front cylinder.

This document is printed from SPI². Not for RESALE


 

KENR9113-01

5

Specifications Section

g02293673

Illustration 2

Typical example

(1), (2)  Tighten the nuts on the high-pressure fuel

lines to the following torque. .....  40 N·m (30 lb ft)

i04085749

Fuel Injection Pump

Note: The timing of the fuel injection pump will need

to be checked by trained personnel. In order to check

the timing of the fuel injection pump, refer to Systems

Operation, Testing and Adjusting, “Fuel  Injection

Pump Timing - Check”.

NOTICE

Refer to Systems  Operation, Testing and Adjust-

ing, “Cleanliness of Fuel System Components” for

detailed information  on the standards  of cleanli-

ness that must be  observed during ALL work  on

the fuel system.

g02293713

Illustration 3

Typical example

(1)  Tighten the studs to the following torque. .. 11 N·m

(97 lb in)

(2)  Tighten the mounting nut  to the following

torque. ......................................  22 N·m (16 lb ft)

(3)  Tighten the fuel temperature sensor  to the

following torque. .......................  22 N·m (16 lb ft)

This document is printed from SPI². Not for RESALE


 

6

KENR9113-01

Specifications  Section

(4)  Tighten the setscrews  to the following

i04083730

torque. ......................................  22 N·m (16 lb ft)

Fuel Transfer Pump

(5)  Tighten the screws for the suction control valve

to the following torque. ............... 9 N·m (80 lb in)

(6)  Tighten the  screw to  the following

torque. ......................................  14 N·m (10 lb ft)

i03631793

Fuel Injectors

NOTICE

Refer to Systems  Operation, Testing and Adjust-

ing, “Cleanliness of Fuel System Components” for

detailed information  on the standards  of cleanli-

ness that must be  observed during ALL work  on

the fuel system.

g02291814

Illustration 5

Typical example

(1)  Tighten the connection  to the following

torque. ......................................  20 N·m (15 lb ft)

g01862457

Illustration 4

Typical example

(3) Clamp

(4) Washer

(5) O ring seal

g02291815

Illustration 6

Typical example

(2), (3)  Tighten the  bolts to  the following

torque. ......................................  22 N·m (16 lb ft)

(1)  Torque for the nuts ...................... 2 N·m (18 lb in)

(2)  Torque for the bolt in  the clamp for the fuel

injection nozzle ......................  21 N·m (15.5 lb ft)

This document is printed from SPI². Not for RESALE


 

KENR9113-01

7

Specifications Section

i04364060

i04364061

Fuel Filter Base

(Single Secondary Fuel Filter

Base)

Fuel Filter Base

(Twin Secondary Fuel Filter

Base)

  

  

NOTICE

NOTICE

Refer to Systems  Operation, Testing and Adjust-

ing, “Cleanliness of Fuel System Components” for

detailed information  on the standards  of cleanli-

ness that must be  observed during ALL work  on

the fuel system.

Refer to Systems  Operation, Testing and Adjust-

ing, “Cleanliness of Fuel System Components” for

detailed information  on the standards  of cleanli-

ness that must be  observed during ALL work on

the fuel system.

If necessary, install a new fuel filter (2) to canister (1).

Refer to Operation and Maintenance Manual, “Fuel

System Secondary Filter - Replace” for the correct

procedure.

If necessary, install a new fuel filter (2) to canister (1).

Refer to Operation and Maintenance Manual, “Fuel

System Secondary Filter - Replace” for the correct

procedure.

g02516539

Illustration 7

Typical example

(3)  Tighten the bolts to the following torque. .. 44 N·m

(33 lb ft)

(4)  Tighten the bolt to the following torque. ... 17 N·m

(13 lb ft)

g02518537

Illustration 8

Typical example

(3)  Tighten the bolts to the following torque. .. 44 N·m

(33 lb ft)

(4)  Tighten the bolt to the following torque. ... 17 N·m

(13 lb ft)

This document is printed from SPI². Not for RESALE


 

8

KENR9113-01

Specifications  Section

i04363635

i04084390

Fuel Filter Base

Fuel Manifold (Rail)

(Primary Fuel Filter Base)

Refer to Operation  and Maintenance Manual,

“General Hazard Information and High Pressure Fuel

Lines” before adjustments and repairs are performed.

NOTICE

Refer to Systems  Operation, Testing and Adjust-

ing, “Cleanliness of Fuel System Components” for

detailed information  on the standards  of cleanli-

ness that must be  observed during ALL work  on

the fuel system.

NOTICE

Refer to Systems  Operation, Testing and Adjust-

ing, “Cleanliness of Fuel System Components” for

detailed information  on the standards  of cleanli-

ness that must be  observed during ALL work on

the fuel system.

If necessary, install a  new fuel filter element to

canister (2). Refer to Operation and Maintenance

Manual, “Fuel System  Primary Filter (Water

Separator) Element -  Replace” for the correct

procedure.

g02293653

Illustration 10

Typical example

g02289936

(1)  Tighten the bolts to the following torque. .. 22 N·m

(16 lb ft)

Illustration 9

Typical example

(2)  Tighten the bolts to the following torque. .. 10 N·m

(89 lb in)

Tighten water in fuel switch (1) hand tight.

(3)  Tighten the connection  to the following

torque. ......................................  17 N·m (13 lb ft)

(3)  Tighten the fuel pressure relief valve  to the

following torque. .......................  30 N·m (22 lb ft)

(4)  Tighten the bolts to the following torque. .. 44 N·m

(32 lb ft)

Note: The fuel pressure relief valve (3) should  be

tightened an additional 24 degrees.

(5)  Tighten the connection  to the following

torque. ......................................  17 N·m (13 lb ft)

(6)  Tighten the connection  to the following

torque. ......................................  17 N·m (13 lb ft)

This document is printed from SPI². Not for RESALE


 

KENR9113-01

9

Specifications Section

i03537811

i03519944

Lifter Group

Rocker Shaft

g01866794

Illustration 11

Typical example

(A)  Diameter of the lifter body .. 21.938 to 21.963 mm

(0.86370 to 0.86468 inch)

Bore diameter  in  the cylinder  block

...... 22.000 to 22.032 mm (0.86614 to 0.86740 inch)

g02113434

Illustration 12

Typical example

Clearance

(1)  Tighten the threaded inserts to the following

torque. ......................................  30 N·m (22 lb ft)

Clearance of the lifter  ..........  0.037 to 0.094 mm

(0.00146 to 0.00370 inch)

(2)  Retaining clip

(3)  Spring

(4)  Inlet rocker arm

Diameter of  the  rocker arm  bore

.... 25.013 to 25.051 mm (0.9848 to 0.9863 inch)

(5)  Exhaust rocker arm

Diameter of  the  rocker arm  bore

.... 25.013 to 25.051 mm (0.9848 to 0.9863 inch)

Clearance

Maximum clearance of both  the rocker arm

bores. ............................ 0.089 mm (0.0035 inch)

The service  limit for  both rocker arm

bores ............................... 0.17 mm (0.0067 inch)

(6)  Guide

This document is printed from SPI². Not for RESALE


 

10

KENR9113-01

Specifications  Section

(7)  Rocker shaft

Diameter  of  the  rocker

shaft .................................. 24.962 to 24.987 mm

(0.98275 to 0.98374 inch)

(8)  Retaining clip

(9)  Spring

g01850497

Illustration 13

Tightening sequence

Tighten the fasteners in the  sequence that is in

illustration 13. Tighten the fasteners to the following

torque. ............................................. 35 N·m (26 lb ft)

i03532881

Valve Mechanism Cover

g01861234

Illustration 14

Typical example

This document is printed from SPI². Not for RESALE


 

KENR9113-01

11

Specifications Section

Tighten the bolts for the valve mechanism cover in

the sequence that is shown in illustration 14. Torque

for the bolts ....................................... 9 N·m (80 lb in)

Table 2

The load for the exhaust

valve spring

The length of the exhaust

valve spring

285  to  315 N

31.5 mm (1.2402 inch)

i03538600

(64.07085 to 70.81515 lb)

Cylinder Head Valves

408.5  to 451.5  N

(91.83488 to 101.50172 lb)

22.3 mm (0.87795 inch)

Note: The free length for the exhaust valve spring is

52.73 mm (2.07598 inch).

g01927357

Illustration 16

Typical example

(3)  Valve face angle

Inlet ................................................... 30 degrees

Exhaust ............................................. 45 degrees

g01927355

Illustration 15

Typical example

(4)  Valve stem diameter

(1) Exhaust valve spring

(2) Inlet valve spring

Inlet .. 6.970 to 6.985 mm (0.2744 to 0.2750 inch)

Exhaust ................................. 6.945 to 6.960 mm

(0.2734 to 0.2740 inch)

When the valve springs  are replaced the valve

springs must be replaced in pairs.

Clearance

Refer to table 1 and table 2 for information  on the

length of the valve spring and the load of the valve

spring.

Maximum clearance  of the inlet  valve

stem ................................ 0.05 mm (0.0020 inch)

The service  limit for  the inlet  valve

Table 1

stem ................................ 0.08 mm (0.0031 inch)

The load for the inlet valve    The length of the inlet valve

spring

spring

Clearance

161.5  to 178.5  N

(36.30682 to 40.12859 lb)

31.5 mm (1.2402 inch)

Maximum clearance of  the exhaust valve

stem ............................ 0.075 mm (0.00295 inch)

The service  limit for the  exhaust valve

337.9  to 373.5  N

(75.96330 to 83.96654 lb)

21.5 mm (0.84646 inch)

stem .............................. 0.10 mm (0.00394 inch)

(5)   Length of valve

Note: The free length for the  inlet valve spring is

40.65 mm (1.60039 inch).

Inlet valve .......................... 109.82 to 110.27 mm

(4.32361 to 4.34133 inch)

Exhaust valve ................ 109.853 to 110.303 mm

(4.32491 to 4.34263 inch)

(6)  Valve head

This document is printed from SPI². Not for RESALE


 

12

KENR9113-01

Specifications  Section

Diameter of inlet valve head .................... 35 mm

(1.37795 inch)

Diameter of exhaust valve head .............. 33 mm

(1.2992 inch)

i04314230

Cylinder Head

g01854993

Illustration 18

Typical example

Note: The maximum distortion of the cylinder head

is given in table 3.

Table 3

Maximum Permissible

Dimension

Distortion

Width (A)

Length (B)

0.03 mm (0.0012 inch)

0.05 mm (0.0020 inch)

0.05 mm (0.020 inch)

g01852017

Illustration 17

Diagonal Line (C)

Typical example

Lubricate the threads and the underside of the head

bolts with clean engine oil.

Tighten the bolts in the sequence that is shown in

illustration 17. Torque for the bolts ........... 50 N·m

(37 lb ft)

Tighten the  bolts again to the  following

torque. ....................................  100 N·m (74 lb ft)

Tighten the  head bolts to the  additional

amount. ........................................... 225 degrees

Minimum thickness of cylinder head ......... 150.8 mm

(5.93700 inch)

This document is printed from SPI². Not for RESALE


 

KENR9113-01

13

Specifications Section

g02328933

g02474819

Illustration 19

Illustration 20

Typical example

Typical example

(D)  Valve guide height from the top of the valve guide

to the valve spring seat .......... 10.75 to 11.25 mm

(0.42323 to 0.44291 inch)

(J)  Diameter of the parent bore  in the cylinder

head ................................... 11.000 to 11.022 mm

(0.43307 to 0.43394 inch)

(E)  Outside diameter  of  the valve

guides ................................ 11.029 to 11.040 mm

(0.43421 to 0.43464 inch)

(K)  Seat angle

Inlet ............................................. 119.15 degrees

Exhaust ........................................ 89.15 degrees

(F)  Length of the valve guides ... 43.75 to 44.25 mm

(1.72244 to 1.74212 inch)

(G)  Internal diameter  of  the valve

guides ................................... 7.007 to 7.020 mm

(0.27587 to 0.27638 inch)

(H)  Valve depths

Inlet .. 0.905 to 1.163 mm (0.0356 to 0.0458 inch)

The service limit for the depth of the inlet valve

........................................ 1.41 mm (0.0555 inch)

Exhaust ................................. 0.876 to 1.131 mm

(0.0345 to 0.0445 inch)

The service  limit for the  exhaust valve

depth ............................... 1.38 mm (0.0543 inch)

g02475018

Illustration 21

Typical example

This document is printed from SPI². Not for RESALE


 

14

KENR9113-01

Specifications  Section

(L)  Seat surface finish ...................... Ra 0.8 microns

The test  pressure for  the wastegate

actuator ........................................ 100 kPa (14.5 psi)

(M)  Concentricity of valve seat  to valve guide

parent bore Maximum Total Indicated Reading

(TIR) .............................  0.08 mm (0.00315 inch)

The movement for the rod actuator .................  1 mm

(0.0394 inch)

i04136811

Turbocharger

g02334338

Illustration 23

Typical example

(8)  Tighten the bolts to the following torque. ... 9 N·m

(80 lb in)

(9)  Tighten the bolt to the following torque. ... 33 N·m

(24 lb ft)

(10)  Tighten the bolt to the following torque. .. 22 N·m

(16 lb ft)

g02334286

Illustration 22

Typical example

(1)  Tighten the  studs to  the following

torque. ......................................  18 N·m (13 lb ft)

(2)  Tighten the nuts to the following torque. .. 44 N·m

(32 lb ft)

(3)  Tighten the bolt to the following torque. ... 15 N·m

(11 lb ft)

(4)  Tighten the  studs to  the following

torque. ......................................  18 N·m (13 lb ft)

(5)  Tighten the nuts to the following torque. .. 44 N·m

(32 lb ft)

(6)  Tighten the band clamps  to the following

torque. .................................... 12 N·m (106 lb in)

(7)  Actuator

This document is printed from SPI². Not for RESALE


 

KENR9113-01

15

Specifications Section

i04087589

Exhaust Gas Valve (NRS)

g01946893

Illustration 24

Typical example

(1)  Tighten the bolts to the following torque. .. 22 N·m

(16 lb ft)

g02295533

Illustration 25

Typical example

This document is printed from SPI². Not for RESALE


 

16

KENR9113-01

Specifications  Section

(2)  Tighten the bolts to the following torque. .. 18 N·m

(13 lb ft)

(3)  Tighten the bolts to the following torque. .. 22 N·m

(16 lb ft)

(4)  Tighten the  clamps to the  following

torque. ........................................ 7 N·m (62 lb in)

(5)  Tighten the bolt to the following torque. ... 18 N·m

(13 lb ft)

g02148954

Illustration 27

Typical example

Note: Apply Tooling (A) to the sensors before the

sensors are installed.

(1)  Tighten the sensors  to the  following

torque. ......................................  45 N·m (33 lb ft)

Tighten the harness for the sensors (not shown) to

the following torque. .................... 1.2 N·m (10.6 lb in)

g02295655

Illustration 26

Typical example

i04087771

Exhaust Cooler (NRS)

(6)  Tighten the bolt to the following torque. ... 15 N·m

(11 lb ft)

(7), (8)  Tighten the fasteners  to the following

torque. ......................................  18 N·m (13 lb ft)

Note: When the pipes for the  exhaust cooler are

removed or installed, care must be taken so that the

pipes are not bent or damaged.

i04364929

Exhaust Sensor and Lines Gp

(NRS)

Table 4

Required Tools

Tool

Part Number

Part Description

QTY

Bostik Pure Nickel

Anti-Seize Compound

A

-

1

This document is printed from SPI². Not for RESALE


 

KENR9113-01

17

Specifications Section

g02295833

Illustration 28

Typical example

(1)  Tighten the setscrews  to the following

torque. ......................................  22 N·m (16 lb ft)

(2)  Tighten the setscrews  to the following

torque. ......................................  18 N·m (13 lb ft)

This document is printed from SPI². Not for RESALE


 

18

KENR9113-01

Specifications  Section

g02295755

Illustration 29

Typical example

(3), (6)  Tighten the setscrews to  the following

torque. ......................................  22 N·m (16 lb ft)

(4), (7), (9)  Tighten the setscrews to the following

torque. ......................................  18 N·m (13 lb ft)

(5), (8)  Tighten the setscrews to  the following

torque. ......................................  44 N·m (32 lb ft)

This document is printed from SPI². Not for RESALE


 

KENR9113-01

19

Specifications Section

i04364975

Exhaust Manifold

g02330776

Illustration 30

Typical example

Tighten the exhaust manifold bolts in the sequence

that is shown in  illustration 30 to the following

torque. ............................................. 44 N·m (32 lb ft)

To measure the flatness of the  exhaust manifold,

follow step 1 to step 4.

1.  Remove all bolts and spacers from the exhaust

manifold.

2.  Install two spacers and bolts into holes eleven and

twelve of port one of the exhaust manifold.

3.  Tighten the bolts to a torque of 44 N·m (32 lb ft).

4.  Use a suitable feeler gauge to measure the gap

that is between port six (holes nine and ten) of the

exhaust manifold and the cylinder head.

The maximum amount that  the gap should be

is ...........................................  1.4 mm (0.05512 inch)

For the correct procedures to remove  and install

the exhaust manifold, refer to  Disassembly and

Assembly.

This document is printed from SPI². Not for RESALE


 

20

KENR9113-01

Specifications  Section

i03936932

Flexible Exhaust Pipe

g02155429

Illustration 31

Typical example

(1)  Tighten the  clamp to  the following

torque. ......................................  35 N·m (26 lb ft)

(2)  Tighten the  clamp to  the following

torque. ......................................  55 N·m (41 lb ft)

Refer to Disassembly and Assembly for the correct

procedure to install the flexible exhaust pipe.

i04229372

Diesel Particulate Filter

Note: To remove and install the Diesel Particulate

Filter (DPF), refer to Disassembly and Assembly for

the correct procedures.

g02405938

Illustration 32

Typical example

This document is printed from SPI². Not for RESALE


 

KENR9113-01

21

Specifications Section

(1)  Tighten the nuts on clamps to  the following

torque. ......................................  17 N·m (13 lb ft)

(2)  Bolt

Torque for the 8.8 graded bolt ..  95 N·m (70 lb ft)

Torque for the 10.9 graded bolt ............. 120 N·m

(89 lb ft)

i04314156

Camshaft

(3)  The diameters of the camshaft journals are given

in the following tables.

Table 5

Camshaft Journals

from the Front End

of the Engine

Standard Diameter

1

Front

50.711 to  50.737  mm

(1.9965 to 1.9975 inch)

50.457 to  50.483  mm

(1.9865 to 1.9875 inch)

2

3

50.203 to  50.229  mm

(1.9765 to 1.9775 inch)

4

Rear

49.949 to  49.975  mm

(1.9665 to 1.9675 inch)

Maximum wear on the camshaft journals ...  0.05 mm

(0.0021 inch)

Check the camshaft lobes for visible damage. If  a

new camshaft is installed, you must install new lifters.

g01927854

Illustration 33

Checking the end play of the camshaft

(1)  End play of a camshaft ......... 0.106 to 0.558 mm

(0.00417 to 0.02197 inch)

Maximum permissible  end play of  a worn

camshaft ...............................  0.62 mm (0.0244 inch)

g02474757

Illustration 35

Typical example

(4)  Camshaft thrust washer

Outer diameter (X) ............ 72.949 to 73.000 mm

(2.872 to 2.874 inch)

Thickness (Y) ........................ 5.486 to 5.537 mm

(0.21598 to 0.21799 inch)

g01859007

Illustration 34

Typical example

This document is printed from SPI². Not for RESALE


 

22

KENR9113-01

Specifications  Section

i03530782

i03551117

Camshaft Bearings

Engine Oil Filter Base

g01859293

g01877935

Illustration 36

Illustration 37

Typical example

Typical example

(1)  The diameter of  the installed camshaft

(1)  Dust cap

bearing .............................. 50.787 to 50.848 mm

(1.9995 to 2.0019 inch)

(2)  Engine oil filter

Torque for the engine oil filter .. 12 N·m (106 lb in)

(3)  Engine oil sampling valve

Torque for the engine  oil sampling valve (if

equipped) ................................ 12 N·m (106 lb in)

Torque for the plug (if equipped) ... 12 N·m (106 lb in)

(4)  Setscrew

Torque for the setscrews that retain the oil filter

base ..........................................  22 N·m (16 lb ft)

This document is printed from SPI². Not for RESALE


 

KENR9113-01

23

Specifications Section

i03524541

Tighten the setscrews in the sequence that is in

illustration 39 to the following torque. ...... 22 N·m

(16 lb ft)

Engine Oil Cooler

i04363634

Engine Oil Pump

Engine Oil Cooler  with a Low

Mounted Filter Base

Type .............................  Gear-driven differential rotor

Number of lobes

Inner rotor ......................................................... 6

Outer rotor ........................................................  7

g02005253

Illustration 38

Typical example

Setscrews

Tighten the setscrews in the sequence that is in

illustration 38 to the following torque. ...... 22 N·m

(16 lb ft)

g00938064

Illustration 40

Engine Oil Cooler  with a High

Mounted Filter Base

(1)  Clearance of  the outer  rotor to the

body ...................................... 0.050 to 0.330 mm

(0.0020 to 0.0130 inch)

g00938061

Illustration 41

Checking the clearance

(2)  Service limit  of inner  rotor to outer

rotor ......................................  0.080 to 0.250 mm

(0.0031 to 0.0098 inch)

g01854213

Illustration 39

Typical example

Setscrews

This document is printed from SPI². Not for RESALE

<, P>


 

24

KENR9113-01

Specifications  Section

i03540441

Engine Oil Pressure

The minimum oil pressure at a  maximum engine

speed of 2200  rpm and at normal  operating

temperature is the following value. .. 315 kPa (45 psi)

g00938799

Illustration 42

Checking the end play

(3)  End play of rotor assembly

Inner rotor ............................. 0.050 to 0.180 mm

(0.0020 to 0.0071 inch)

Outer rotor ............................  0.050 to 0.180 mm

(0.0020 to 0.0071 inch)

g02293754

Illustration 43

Typical example

(4) Suction Pipe

(6) Bracket for the Suction Pipe

(5), (8), (9), (10)  Tighten the bolts to the following

torque. ......................................  22 N·m (16 lb ft)

(7)  Tighten the bolt to the following torque. ... 44 N·m

(32 lb ft)

This document is printed from SPI². Not for RESALE


 

KENR9113-01

25

Specifications Section

i04129089

Engine Oil Pan

g01856874

Illustration 44

(X) Guide studs

(Y) Short fastener

Tighten the fasteners in the sequence that is shown

in illustration 44. Torque for the fasteners ...... 22 N·m

(16 lb ft)

g01857014

Illustration 45

Remove the guide studs. Install the fasteners (27),

(28), (29) and (30).

Tighten the  oil drain plug  to the following

torque. ............................................. 34 N·m (25 lb ft)

Tighten the fastener in the sequence that is shown in

illustration 45. Torque for the fasteners .......... 22 N·m

(16 lb ft)

Tighten the oil level  switch (if equipped) to the

following torque. .............................. 34 N·m (25 lb ft)

This document is printed from SPI². Not for RESALE


 

26

KENR9113-01

Specifications  Section

Refer to the Disassembly and Assembly, “Engine Oil

Pan” for the correct procedure to install the engine

oil pan.

The Cast Iron Oil Pan

g01397669

Illustration 46

Tightening sequence

Tighten the fasteners in the sequence that is shown

in illustration 46 to the following torque. ......... 22 N·m

(16 lb ft)

Tighten the  oil drain plug  to the following

torque. ............................................. 34 N·m (25 lb ft)

Tighten the oil level  switch (if equipped) to the

following torque. .............................. 34 N·m (25 lb ft)

This document is printed from SPI². Not for RESALE


 

KENR9113-01

27

Specifications Section

i04085789

i03520180

Water Temperature Regulator

and Housing

Crankcase Breather

g01853873

Illustration 48

Typical example

Water temperature regulator housing

(1)  Torque for the bolts that fasten the housing to the

cylinder head ............................  22 N·m (16 lb ft)

g02295333

Illustration 47

Typical example

(2)  Torque for the vent plug ....... 22 N·m (16.22 lb ft)

(1), (2), (3)  Tighten the setscrews to the following

torque. ......................................  22 N·m (16 lb ft)

(4)  Tighten the setscrews  to the following

torque. ......................................  44 N·m (32 lb ft)

Note: If a hexagonal pillar spacer is required, install

the spacer to the engine oil cooler. Tighten the spacer

to a torque of 22 N·m (16 lb ft).

g01854133

Illustration 49

(4)  Water temperature regulator

This document is printed from SPI². Not for RESALE


 

28

KENR9113-01

Specifications  Section

Opening temperature ........................ 80° to 84°C

(151° to 176°F)

Maximum open length of 11 mm (0.43307 inch) is

achieved at the following temperature. ...... 94° C

(201° F)

i04117792

Cylinder Block

i03899331

Water Pump

g01855114

Illustration 51

Cylinder block

(1)  Cylinder block

(2)  Cylinder bore ................ 105.000 to 105.025 mm

(4.1338 to 4.1348 inch)

g02142711

Illustration 50

Tightening sequence

(3)  Camshaft bearings

Tighten the setscrews in the numerical sequence

that is shown in  illustration 50 to the following

torque. ............................................. 22 N·m (16 lb ft)

Diameter of  the bushing in the  cylinder

block for  the  number 1  camshaft

bearing .............................. 55.563 to 55.593 mm

(2.1875 to 2.1887 inch)

Diameter of  the bore  in the  cylinder

block for  the  number 2  camshaft

journal ............................... 50.546 to 50.597 mm

(1.9900 to 1.9920 inch)

Diameter of  the bore  in the  cylinder

block for  the  number 3  camshaft

journal ............................... 50.292 to 50.343 mm

(1.9800 to 1.9820 inch)

Diameter of  the bore  in the  cylinder

block for  the  number 4  camshaft

journal ............................... 50.038 to 50.089 mm

(1.9700 to 1.9720 inch)

(4)  Main bearings

Bore in  the cylinder block  for the main

bearings ............................ 88.246 to 88.272 mm

(3.4742 to 3.4753 inch)

(5)  Main bearing cap bolts

This document is printed from SPI². Not for RESALE


 

KENR9113-01

29

Specifications Section

Use the following procedure in order to install  the

main bearing cap bolts:

Standard  thickness  of thrust

washer ......  2.69 to 2.75 mm (0.1059 to 0.1083 inch)

1.  Apply clean engine oil to the threads of the main

bearing cap bolts.

Oversize  thickness  of thrust

washer ....... 2.89 to 2.95 mm (0.1138 to 0.1161 inch)

2.  Put the main bearing caps in the correct position

that is indicated by a number on  the top of the

main bearing cap. Install the main bearing caps

with the locating tabs in correct alignment with the

recess in the cylinder block.

3.  Evenly tighten the main bearing cap bolts.

Torque for the main bearing cap bolts. ...... 80 N·m

(59 lb ft)

4.   After torquing the bolts for the main bearing caps,

the bolts must be rotated  for an additional 90

degrees.

Note: Ensure that the crankshaft can rotate freely.

i04029133

Crankshaft

g01862538

Illustration 52

Typical example

(1) Crankshaft gear

(2) Crankshaft

(3) Crankshaft thrust washers

Maximum permissible temperature of the gear for

installation on the crankshaft ........... 180 °C (356 °F)

The end play of a new crankshaft ..... 0.1 to 0.41 mm

(0.00394 to 0.01614 inch)

This document is printed from SPI². Not for RESALE


 

30

KENR9113-01

Specifications  Section

g01869273

i03520221

Illustration 53

(4) Journal 1

(5) Journal 2

(6) Journal 3

(7) Journal 4

(8) Journal 5

(9) Journal 6

(10) Journal 7

Refer to Table 6 for the  run out of the crankshaft

journals.

Crankshaft Seals

Table 6

Journal

(1)

Run Out of the Journals

Mounting

(2)

0.05 mm (0.0020 inch)

0.1 mm (0.0039 inch)

0.15 mm (0.0059 inch)

0.1 mm (0.0039 inch)

0.05 mm (0.0020 inch)

Mounting

You do not need to remove  the engine oil pan in

order to install the oil seal.

(3)

(4)

Note: Some engines also  have an oil seal that

is installed in  the flywheel housing. Refer  to

Specifications, “Flywheel Housing”  for more

information.

(5)

(6)

(7)

Inspect the crankshaft for wear or for damage. For

more information regarding the servicing  of the

crankshaft, contact the Global Technical Support

Center.

Refer to Specifications, “Connecting Rod Bearing

Journal” for more information on the connecting rod

bearing journals and connecting rod bearings.

Refer to Specifications, “Main Bearing Journal” for

information on the main bearing  journals and for

information on the main bearings.

This document is printed from SPI². Not for RESALE


 

KENR9113-01

31

Specifications Section

The sequence for installation of the

rear oil seal

i03930112

Vibration Damper and Pulley

g02153930

Illustration 55

Typical example

g01863635

Illustration 54

(1)  Tighten the setscrews for the adapter to  the

following torque. .......................  40 N·m (30 lb ft)

Typical example

(11), (12)  Torque for the fasteners .. 15 N·m (11 lb ft)

(1), (2)  Torque for the fastener  ...... 22 N·m (16 lb ft)

Loosen fastener (11) and (12) by one complete turn.

The setscrews (1) must be tightened  through an

angle of 120 degrees.

(2)  Tighten the bolts for the damper and pulley to the

following torque. ...................... 115 N·m (85 lb ft)

Tighten the fasteners in the  sequence that is in

illustration 54. Torque for the fasteners .......... 22 N·m

(16 lb ft)

(3)  Vibration damper

(4)  Crankshaft pulley

(5)  Crankshaft adapter

The maximum out of  concentricity between the

crankshaft flange and the outside diameter of  the

rear seal for the crankshaft.  .. 0.4 mm (0.01575 inch)

i04067349

Connecting Rod  Bearing

Journal

The original size of the connecting rod bearing journal

on the crankshaft ....................  71.970 to 71.990 mm

(2.83346 to 2.83425 inch)

Maximum permissible wear of a  bearing journal

on the crankshaft when a  new connecting rod is

installed ................................. 0.04 mm (0.0016 inch)

This document is printed from SPI². Not for RESALE


 

32

KENR9113-01

Specifications  Section

Width of the connecting rod bearing journals on the

crankshaft ...............................  37.962 to 38.038 mm

(1.4946 to 1.4976 inch)

Thickness at center of the shells of oversize bearing

shell 0.76 mm (0.030 inch) .........  2.480 to 2.486 mm

(0.09764 to 0.09787 inch)

Radius of the fillet of the  connecting rod bearing

journals .........  3.68 to 3.96 mm (0.145 to 0.156 inch)

Width of the main bearing shells .. 26.32 to 26.58 mm

(1.03622 to 1.04645 inch)

Surface finish  of connecting rod  bearing

journals .............................................  Ra 0.2 microns

Clearance between the bearing shell and the main

bearing journals ..........................  0.036 to 0.094 mm

(0.00142 to 0.00370 inch)

Surface finish of radii ........................ Ra 0.4 microns

i04234795

i04067350

Connecting Rod

Main Bearing Journal

The original  size of  the main  bearing

journal ..................................... 83.980 to 84.000 mm

(3.30629 to 3.30708 inch)

Maximum permissible wear of the  main bearing

journals ...............................  0.040 mm (0.0016 inch)

Radius of  the fillet  of the main  bearing

journals .......................................  3.875 to 4.125 mm

(0.15256 to 0.16240 inch)

Surface finish of bearing journals and  crank pins

.......................................................... Ra 0.2 microns

Surface finish of radii ........................ Ra 0.4 microns

Width of new main bearing journal where the thrust

washer is installed ..................  35.235 to 35.165 mm

(1.3872 to 1.3844 inch)

g01860862

Illustration 56

Width of new main bearing journal where the thrust

washer is not installed ................  35.25 to 35.15 mm

(1.38779 to 1.38386 inch)

Typical example

(1)  The bearing shell for the connecting rod

The shell for the main bearings

For the correct procedure  to install the bearing

shell for the connecting rod, refer to Disassembly

and Assembly, “Pistons and Connecting  Rods -

Assemble”.

The shells for  the main bearings are available

for remachined journals which have the following

oversize dimensions.

Table 7

Oversize bearing shell ...... 0.25 mm (0.010 inch)

Oversize bearing shell ...... 0.50 mm (0.020 inch)

Oversize bearing shell ...... 0.76 mm (0.030 inch)

Thickness of Connecting

1.994 to  2.000 mm

Rod Bearing  at the

(0.0785 to 0.0787 inch)

Center

Thickness at center of the shells of oversize bearing

shell 0.25 mm (0.010 inch) .........  2.226 to 2.232 mm

(0.08764 to 0.08787 inch)

Thickness of Bearing

Cap at the Center

1.994 to  2.000 mm

(0.0785 to 0.0787 inch)

0.080 to  0.035 mm

(0.00315 to 0.00138 inch)

Bearing Clearance

Thickness at center of the shells of oversize bearing

shell 0.50 mm (0.020 inch) .........  2.353 to 2.359 mm

(0.09264 to 0.09287 inch)

This document is printed from SPI². Not for RESALE


 

KENR9113-01

33

Specifications Section

Table 8

Oversize Connecting Rod  Bearing

0.25 mm  (0.010 inch)

0.51 mm  (0.020 inch)

0.76 mm  (0.030 inch)

g01860878

Illustration 58

g01950657

Illustration 57

Typical example

(U) Day code

(V) Code for the connecting rod

(X) Code for the Connecting rod  cap

(Y) Year code

Typical example

(3)  Diameter of the finished bore for  the piston

pin ..................................... 39.738 to 39.723 mm

(1.5645 to 1.5639 inch)

(Z) Code for the grade of connecting rod

(4)  Distance between  the parent bores

...... 219.05 to 219.1 mm (8.6240 to 8.6260 inch)

Note: The day code  is from the first day in  the

year. For example, “001” will be the first day of the

appropriate year.

(5)  Diameter for the finished bore for the connecting

rod bearing .......................  76.025 to 76.038 mm

(2.99310 to 2.99362 inch)

The mating surfaces of  the connecting rod are

produced by hydraulically fracturing  the forged

connecting rod. Ensure that  the correct cap for

the connecting rod is  installed with the correct

connecting rod. Ensure that the serial numbers for

both components match.

The connecting rod is color coded. The color code

is a reference for the length of the connecting rod.

Refer to table 9 for the length of connecting rod.

Table 9

Specifications for the Connecting  Rod

(2)  Torque of the setscrews for the connecting rod

..................................................  40 N·m (30 lb ft)

Grade

Letter

Length  Of The

Connecting Rod

Color Code

Tighten the setscrews for the  connecting rod for

an additional 120 degrees. The setscrews for the

connecting rod (2) must  be replaced after this

procedure.

161.107 to 161.140 mm

(6.3428 to 6.3441 inch)

B

Blue

Note: Always tighten the connecting rod cap to the

connecting rod, when the assembly is  out of the

engine. Tighten the assembly to the following torque

20 N·m (14 lb ft).

This document is printed from SPI². Not for RESALE


 

34

KENR9113-01

Specifications  Section

i04041471

Width of oil control ring ............. 2.97 to 2.99 mm

(0.1169 to 0.1177 inch)

Piston and Rings

The clearance between a new oil control ring and

the groove in a new piston ........ 0.03 to 0.07 mm

(0.0011 to 0.0027 inch)

Ring gap ...................................  0.30 to 0.55 mm

(0.0118 to 0.0216 inch)

Note: When you install a new oil control ring, make

sure that the word “TOP” is  facing the top of the

piston. New oil control rings have a red identification

mark. The identification mark must be  on the left

of the ring end  gap when the top piston ring  is

installed on an upright piston. The oil control ring is

a two-piece ring that is spring loaded. A pin is used

in order to hold both ends  of the spring of the oil

control ring in position. The ends of the spring of the

oil control ring must be installed opposite the end gap

of the oil control ring.

Note: Ensure that the ring end gaps of the  piston

rings are spaced 120 degrees from each other.

g01155119

Illustration 59

Typical example

Piston

(1)  Top compression ring

The shape  of the  top compression

ring ....................................................... Keystone

Note: An arrow which is marked on the piston crown

must be toward the front of the engine.

Ring gap ...................................  0.30 to 0.40 mm

(0.01181 to 0.01575 inch)

Piston height above cylinder block .. 0.55 to 0.20 mm

(0.02165 to 0.00787 inch)

Note: When you install a new top compression ring,

make sure that the word  “TOP” is facing the top

of the piston. New top piston  rings have a black

identification mark. The identification mark must be

on the left of the ring end gap when the  top piston

ring is installed on an upright piston.

Width of top groove in the piston .................  Tapered

Width  of second  groove  in new

piston ........  2.56 to 2.58 mm (0.1008 to 0.1016 inch)

Width of third groove in new piston .. 3.02 to 3.04 mm

(0.1189 to 0.1197 inch)

(2)  Intermediate compression ring

Piston pin

The shape of the intermediate  compression

ring ....................................... Internal bevel in the

bottom edge with a tapered face

Diameter  of  a new  piston

pin ..................................... 39.694 to 39.700 mm

(1.5628 to 1.5630 inch)

Width of  intermediate compression

ring .... 2.47 to 2.495 mm (0.0972 to 0.0982 inch)

The clearance between a  new intermediate

compression ring and the piston groove in a new

piston ..................................... 0.065 to 0.110 mm

(0.00256 to 0.00433 inch)

Ring gap ...................................  0.65 to 0.85 mm

(0.0256 to 0.0335 inch)

Note: When you  install a new  intermediate

compression ring, make sure that the word “TOP” is

facing the top of the piston. New intermediate rings

have a blue identification mark. The identification

mark must be on the left of the ring end gap when the

top piston ring is installed on an upright piston.

(3)  The oil control ring

This document is printed from SPI². N

免費熱線
400-082-9096?
整機銷售
0731-84424871? 18374999699
售后維修
0731-84424872? 15580888444
配件銷售
0731-84424873? 18274802060
手機端
微信公眾號
主站蜘蛛池模板: 国产精品国产三级国产an不卡| 高清欧美性xxxx成熟| 五月天婷婷久久| 女的毛片毛片毛毛片毛毛毛毛片| 国产成人精品久久免费动漫| 一级片在线免费| 日韩亚洲欧美日本精品va| 久视频在线观看久视频| 亚洲另类自拍| 日本成人网址| 久久精品9| 国产精品久久精品| 91欧美国产| 性欧美v| 毛片免| 韩国视频一区| jizz视频在线观看| 一级黄网| 天天操夜夜草| 人体女人xx| 另类国产| 黄色网页在线看| 国产a一级毛片爽爽影院| 91福利免费视频| 亚洲免费一| 日韩中文字幕在线观看视频| 女性人体aa欣赏| 九色综合伊人久久富二代| 国产福利91精品| 99久热re在线精品99 6热视频| 亚洲三级中文字幕| 天天爱天天做色综合| 日本在线视| 欧美日韩伦理| 久久曰视频| 午夜刺激爽爽视频免费观看| 日韩经典欧美一区二区三区| 欧美精品视| 玖玖爱视频在线观看| 精品久久久久久久久久| 国产美女啪啪|